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Abstract The Anti-Kekulé number of a connected graph G is the smallest number
of edges that have to be removed from G in such way that G remains connected but it
has no Kekulé structures. In this paper it is proved that the Anti-Kekulé number of all
fullerenes is either 3 or 4 and that for each leapfrog fullerene the Anti-Kekulé number
can be established by observing finite number of cases not depending on the size of
the fullerene.
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1 Introduction

Graph theory models have been extensively used as predictors of the properties of
chemical compounds (see [1,2] and references within). The concept of perfect match-
ings [3] corresponds to the notion of Kekulé structure in chemistry and plays a very
important role in analyses of benzenoid systems, fullerenes and other carbon cages
[4,5]. For example, it is well known that carbon compounds without Kekulé structures
are unstable.

Fullerenes are closed carbon-cages that contain only pentagonal and hexagonal
rings. For the discovery of the first fullerene C60 [6,7] R. F. Curl, H. Kroto and

K. Kutnar
University of Primorska, Cankarjeva 6, 6000 Koper, Slovenia

J. Sedlar
Faculty of Civil Engineering and Architecture, University of Split,
Matice Hrvatske 15, 21000 Split, Croatia

D. Vukičević (B)
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R. E. Smalley received the Nobel Prize. The study of Kekulé structures of chemical
compounds is very important, because they have many “hidden treasures” [5] that
may explain their physical and chemical properties. Kekulé structures of C60 have
been extensively studied by M. Ranić, H. Kroto, D. Vukičević and others [8–11].

It is found that the anti-Kekulé number [12] of C60 is equal to 4 [13]. The aim of
this paper is to extend this result to the class of leapfrog fullerenes. Note that C60 is the
smallest leapfrog fullerenes [14]. All leapfrog fullering obey the IP (isolated pentagon
rules), that is they don’t have adjacent pentagons [14]. It is claimed that fullerenes that
obey IP are the most stable and the most important fullerenes [14], hence their study
is of great interest.

2 Basic definitions and preliminaries

Let G be a connected graph with at least one perfect matching (Kekulé structure).
Denote by E (G) the set of its edges and by V (G) the set of its vertices. Let S ⊆ E (G).
Denote by G − S the graph obtained from G by eliminating edges in S. If G − S is
connected and has no perfect matching, then we say that S is an anti-Kekulé set. The
cardinality of the smallest anti-Kekulé set is called the anti-Kekulé number of G and
is denoted by ak (G).

Also, in graph theory a fullerene is defined as any 3-connected 3-regular, planar
graph with all faces of size 5 or 6 (including the external face). From Euler’s polyhe-
dron formula it follows that there are exactly 12 pentagons in a fullerene.

To define the leapfrog transformation of a fullerene we have to introduce stellation
and dualization [15]. Stellation, St , of a face is achieved by adding a new vertex in its
center followed by connecting it with each boundary vertex. It is also called a capping
operation or triangulation. When all the faces of a graph are thus operated on, it is
referred to as an omnicapping operation and the resulting graph is denoted by St (G).
Dualization, Du, of a graph is built as follows: locate a point in the center of each face.
Join two such points if their corresponding faces have a common edge. The new edge
is called the edge dual, Du(e) and the transformed map, the (Poincaré) dual Du(G).
The vertices of Du(G) represent the faces of G and vice-versa. Dual of the dual recov-
ers the original graph: Du(Du(G)) = G. Leapfrog, Le, is a composite operation that
can be written as: Le(G) = Du(St (G)). Vertices that are added in the stellation of
a graph, and faces that correspond to those vertices in the dual of a stellation will be
called caps, other faces will be referred to as non-caps.

Also, if a graph G is d-regular then the following theorem holds [15]:

Theorem 1 The number of vertices in the leapfrog transform Le(G) of G is d times
larger than in the original graph G.

Since a fullerene G is a 3-regular graph, the number of vertices in Le(G) is 3 times
larger than in G. Note that Le(G) is a fullerene too.
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3 Main results

In this paper we will investigate the anti-Kekulé number of an arbitrary leapfrog fuller-
ene. First we will show that the anti-Kekulé number of an arbitrary leapfrog fullerene
is at most 4. To show that, let G be an arbitrary leapfrog fullerene and consider one
pentagon in G. Let us label the vertices of that pentagon with numbers 1, 2, 3, 4, 5.
Each of these five vertices has two neighbors on the pentagon. Since G is 3-regular,
for each of these 5 vertices there is exactly one vertex adjacent to it which is not on the
pentagon. Let us denote that remaining neighbor of a vertex i with vi for i = 1, . . . , 5.
Now, let us choose one vertex on the pentagon, say vertex 1, and let the vertices 2 and
5 be its neighbors on the pentagon. We define the set S = {e1, e2, e3, e4} where e1
and e2 are two edges incident to vertex 5 and not to vertex 1, and e3 and e4 are two
edges incident to vertex 2 and not to vertex 1. In the graph G − S vertices 2 and 5 can
both be matched only with vertex 1. Therefore G − S has no perfect matching (Kekulé
structure). This all is illustrated in Fig. 1.

Also, we have to prove that G − S remains connected. To show that, first denote the
non-cap hexagon incident to the edge i − j by Ci j . Note that by deleting the edge 2−v2
the graph remains connected since it contains a path from vertex 2 to v2 consisting of
the remainder of the hexagon C12. By further deleting the edge 2 − 3 the graph still
remains connected since it contains a path from 2 to 3 consisting of the remainders of
hexagons C12 and C23. The proof that G remains connected after further deletion of
edges 5 − v5 and 4 − 5 is analogous. This is illustrated in Fig. 2.

So, the set S of cardinality 4 is an anti-Kekulé set, hence we can conclude
ak (G) ≤ 4.

Fig. 1 The Anti-Kekulé set of cardinality four for an arbitrary fullerene
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Fig. 2 Path that connect vertices incident to deleted edges

We are now ready to prove the main theorem of this paper. First, note that all
non-caps in the leapfrog fullerene G are hexagons, while caps can be pentagons or
hexagons where the number of pentagon caps is exactly 12.

A graph is cyclically k-edge-connected if at least k edges need to be removed in
order to disconnect the graph into two components each containing a cycle. It was
proved by Došlić ([16], Theorem 2) that the cyclic edge-connectivity of a fullerene is
5. Obviously, fullerene has no cycles of length 3 or 4. Let us prove our main theorem:

Theorem 2 Let G = Le (�) be an arbitrary leapfrog fullerene. If ak(G) = 3 then
the smallest anti-Kekulé set is S = {e1, e2, e3} where

(i) e3 is incident to two non-cap hexagons which are neighboring exactly two
pentagon caps.

(ii) e1 is incident to one of the two non-cap hexagons and one of the two pentagon
caps, and

(ii) e2 is incident to other of the two non-cap hexagons and other of the two pentagon
caps.

All the possibilities for S are illustrated in Fig. 3.

Proof For convenience we introduce the following terminology. An edge incident to
a cap will be called a cap edge, and a non-cap edge otherwise.

Now, let G be an arbitrary leapfrog fullerene with ak(G) = 3 and S the smallest
anti-Kekulé set. We will distinguish four different cases.

Case 1 All three edges from S are cap edges.
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Fig. 3 All the possibilities for set S from Theorem 2

Noting that every vertex in a leapfrog fullerene G is incident to exactly one non-cap
edge, we can conclude that the set of all non-cap edges is a perfect matching in G.
Therefore, this case is impossible.

Case 2 Exactly two of the edges in S are cap edges.

Let us denote those two edges by e1 and e2. The remaining edge from S, call it
e3, is a non-cap edge. Furthermore, let us denote with H1 and H2 the two non-cap
hexagons to which e3 is incident. We first claim that e1 and e2 have to be adjacent to
H1 or H2 too. To prove that suppose on the contrary, that at least one of the edges e1
and e2 is not incident to any of the hexagons H1 and H2. We will construct a perfect
matching in G − S as follows. Let all vertices in G − S, except for vertices on H1
and H2, be matched by non-cap edges. Since at most one of the cap edges on H1 and
H2 is in S, it follows that for at least one of the hexagons H1 and H2, all three cap
edges incident to it in G are included in G − S too. Without loss of generality we can
assume that hexagon be H1. Then the vertices from H1 can be matched by cap edges,
and the remaining four vertices from H2 can be matched by non-cap edges. Therefore
we have a perfect matching in G − S, which is a contradiction. This is illustrated in
Fig. 4.

Now, consider a patch on a fullerene consisting of two non-cap hexagons H1 and
H2 to which that one non-cap edge e3 from S is incident to, four caps adjacent to those
two hexagons and all non-cap hexagons adjacent to those four caps. It can be checked
that G − S has a perfect matching in all cases except when exactly two out of four
caps adjacent to H1 and H2 are pentagons, say P1 and P2, and e1 ∈ S is adjacent to
H1 and P1 while e2 ∈ S is adjacent to H2 and P2. These exceptions are precisely the
ones shown in Fig. 3.

Fig. 4 An example of matching
vertices on H1 and H2. Cap
faces are shown in grey. Edges
from S are red
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Fig. 5 A matching of vertices
on hexagons H1, H2, H3 and H4

Case 3 Exactly one of the edges in S is a cap edge, denote it by e1. The remaining
two non-cap edges from S are e2 and e3.

First we claim that e2 and e3 belong to the same non-cap hexagon. Suppose on
the contrary, that H1 and H2 are the two non-cap hexagons containing e2, and H3
and H4 are the two non-cap hexagons containing e3, in total four different hexagons.
Now we construct a perfect matching as follows. All vertices from G − S except for
vertices from H1, H2, H3 and H4 are matched using non-cap edges. Since only one
cap edge is in S, it follows that for at least three of the hexagons H1,H2, H3 and H4,
all three cap edges incident to it are included in G − S. Without loss of generality we
can suppose that these hexagons are H1, H2 and H3. It follows then vertices on H3
can be matched by cap edges, and the remaining vertices on H4 by non-cap edges.
Since non-cap hexagons correspond to vertices in � and � has no cycles of length 3
or 4, it follows that at least one of the hexagons H1 and H2 is not adjacent to either of
the hexagons H3 and H4. Without loss of generality we can assume that this hexagon
is H1. It follows that vertices on H1 are matched by cap edges, and the remaining
vertices on H2 are matched by non-cap edges. This is illustrated in Fig. 5.

In conclusion e2 and e3 have to be contained on the same non-cap hexagon H for
otherwise G − S has a perfect matching. Further, we claim that the cap edge e1 from
S also belongs to H . Namely note that if that was not the case vertices of G − S not
on H could be matched by non-cap edges and vertices on H could be matched by
cap edges. This would gives us a perfect matching on G − S, a contradiction. This is
illustrated in Fig. 6.

Let us now consider a patch on a fullerene which consists of a non-cap hexagon
H to which all edges from S are incident, three caps adjacent to H , and all non-cap
hexagons adjacent to those three caps. It is easily seen that all vertices in G − S can
be matched by non-cap edges. Also, it can be verified (by computer) that vertices on
this patch can be perfectly matched in all possible cases. That is, irrespective of any
pentagon and hexagon making up this patch.
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Fig. 6 An example of matching
vertices on hexagon H

Fig. 7 An example of matching
vertices of hexagon H

Case 4 None of the edges in S is a cap edge.

If all three edges from S belong to the same hexagon H then the vertices on H
can be matched in G − S by cap edges on H , whereas other vertices can be matched
by non-cap edges. These would give us a perfect matching in G − S, a contradiction.
This is illustrated in Fig. 7.

Now suppose that two of the edges from S belong to the same hexagon H . The
remaining edge belongs to two hexagons, call them H1 and H2, both different form
H . Since � does not cycles of length 3, then it follows that at least one of H1 and H2 is
not adjacent to H . Say this hexagon is H1. Then all vertices in G − S can be matched
by non-cap edges except vertices on H and H1. These can be matched by cap edges
on H and H1. Therefore we would have a perfect matching in G − S, a contradiction.
This is illustrated in Fig. 8.

Now suppose that the three edges from S belong to different hexagon: H1, H2 and
H3. Also, they can be chosen in such a way that neither two of them are adjacent. To
show this, note that each of the edges from S is adjacent to two non-cap hexagons,
that is, e1 is incident to H1 and H ′

1, and e2 is incident to H2 and H ′
2, and e3 is incident

to H3 and H ′
3. Since � does not contain cycles of length 3 and 4, it follows that at

most one of the hexagons H1 and H ′
1 is adjacent to at most one of hexagons H2 and

H ′
2. Without loss of generality we can assume that H ′

1 is adjacent to H ′
2. Then choose

the hexagon H1 and H ′
2, respectively, for edge e1 and e2. This is illustrated in Fig. 9.

If one of the hexagons H3 and H ′
3 is not incident to either of the two hexagons H1

and H ′
2, then we choose that hexagon for edge e3 and so neither of the three chosen
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Fig. 8 An example of matching
vertices of hexagons H , H1 and
H2

Fig. 9 Choosing hexagons H1
and H2 so that they are not
adjacent

hexagons are adjacent. Otherwise, if say H3 is adjacent to H ′
2 and H ′

3 is adjacent to
H1, then the fact that � does not contain cycles of length 3 and 4 implies that H2 is
not adjacent to any of the hexagons H1, H ′

1, H3 and H ′
3. Then we can choose H1 for

e1, H2 for e2 and H3 for e3. This is illustrated in Fig. 10.
We have shown that H1, H2 and H3 can be chosen in such a way that no two of

them are adjacent. It follows that all vertices in G − S can be perfectly matched by
non-cap edges except for vertices on H1, H2 and H3. But these vertices can be perfectly
matched by cap edges incident to those hexagons. We again have a perfect matching
in G − S, a contradiction. This is illustrated in Fig. 11. This proves Theorem 2. ��

Note that C60, the leapfrog-fullerene of the dodecahedron, does not contain any
of the three local structures shown in Fig. 3 and therefore Theorem 2 implies that
ak(C60) = 4 which is consistent with the result in [13].

Now, if we want to calculate the anti-Kekulé number of a leapfrog fullerene, from
Theorem 2 it follows that we have to check at most 90 combinations of three edges.
Namely, set S must contain 3 edges: e1, e2 and e3, where e1 and e2 are cap edges
and e3 is non-cap edge. Let us first fix cap edge e1. The cap e1 belongs to must be
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Fig. 10 Choosing hexagons
H1, H2 and H3 so that they are
not adjacent

Fig. 11 An example of
matching vertices of hexagons
H1, H2 and H3

Fig. 12 Combinations of edges that must be checked in order to calculate ak (G)

pentagon, so this can be done in 60 ways since there are exactly 12 pentagon caps,
each of which has 5 cap edges. Now note that the non-cap edge e3 ∈ S must be chosen
among one of the three non-cap edges on a non-cap hexagon to which e1 belongs to.
Relative to these three choices of e3, the remaining cap edge e2 ∈ S can be in at most
7 positions. This is illustrated in Fig. 12.

Note that Fig. 12a represents two possible combinations of edges, Fig. 12b rep-
resents three possible combinations of edges and Fig. 12c represents two possible
combinations of edges. In each case edges e1 and e3 are fixed and two (or three in case
b) combinations are obtained by choosing one of the two (or three in case b) marked
edges for e2. Therefore, there are 7 combinations in all. Furthermore, note that not
all 7 combinations satisfy conditions of Theorem 2 at the same time. How many of
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Fig. 13 The maximum possible
number of admissible
combinations to be checked

them do satisfy the conditions of Theorem 2, depends on the sizes of the neighboring
caps. A somewhat tedious analysis shows that the maximum number of admissible
combinations is 3 and is attained with respect to combination of caps shown in Fig. 13.

Therefore, e1 can be chosen in 60 different ways, and for chosen e1 there are at most
3 different possibilities for S. Also, note that in this way each admissible combination
of edges is counted twice. Namely, since e1 and e2 are both cap edges that belong to
a pentagon cap, the same combination is counted second time with e2 in the place of
e1 and e1 in the place of e2. So, we can conclude that there are at most 60 · 3/2 = 90
possible combinations for S.

4 Conclusions

In this paper, it is established that the anti-Kekulé number of a leapfrog fullerene
is either 3 or 4. In particular, it is shown that only leapfrog fullerenes with the
anti-Kekulé number equal to 3 are those which contain at least two pentagons at
distance 2 (that is, with precisely one hexagon between these two pentagons). In par-
ticular, the anti-Kekulé number of the leapfrog fullerene of a fullerene obeying IPR
is equal to 4. Consequently, the anti-Kekulé number of the leapfrog fullerene of any
leapfrog fullerene is equal to 4.

Also, it is shown that the anti-Kekulé number can be computed by an analysis of at
most 90 cases. This result dramatically reduces the time needed for finding the anti-
Kekulé number of fullerenes in the generale case. Let us illustrate this by a simple
example. Consider the leapfrog fullerene Le (C60), where C60 is any fullerene with 60
vertices (not necessarily Buckminsterfullerene). Le (C60) has 180 vertices and hence

270 edges. Without this theorem, one would have to consider

(
270
3

)
= 3,244,140

cases, but here it is shown that it is sufficient to observe only 90 cases. Moreover if C60
is Buckminsterfullerene (which obeys the IP), the anti-Kekulé number of Le(C60) is
equal to 4and no cases need to be analyzed.
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9. D. Vukičević, H.W. Kroto, M. Randić, Croatica Chemica Acta 78, 223 (2005)
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